Synthetic Lapachol Derivatives Relax Guinea-Pig Ileum by Blockade of the Voltage-Gated Calcium Channels

Fabiana de A. Cavalcante^{a,b}, Fabio de S. Monteiro^a, Italo Rossi R. Martins^a, Ticiano P. Barbosa^a, Celso de A. Camara^c, Ângelo C. Pinto^d, Maria D. Vargas^e, and Bagnólia A. da Silva^{a,f,*}

- Laboratório de Tecnologia Farmacêutica "Prof. Delby Fernandes de Medeiros",
 Universidade Federal da Paraíba, P. O. Box 5009, 58051-970, João Pessoa, Paraíba, Brazil.
 Fax: +55-83-32 16 75 02. E-mail: bagnolia@ltf.ufpb.br or fabiana.andrade@ccbi.ufal.br
 Instituto de Ciências Biológicas e da Saúde, Universidade Federal de Alagoas, Maceió,
 Alagoas, Brazil
- Compartamento de Química, Universidade Federal Rural de Pernambuco, Recife, Pernambuco, Brazil
- d Instituto de Química-CT, Bloco A, Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto de Química, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil
 Departamento de Ciências Farmacêuticas, Universidade Federal da Paraíba, João Pessoa, Paraíba, Brazil
- * Author for correspondence and reprint requests
- Z. Naturforsch. **65 c**, 627–636 (2010); received November 20, 2008/June 1, 2009

The present study was designed to further evaluate a possible spasmolytic activity of synthetic lapachol derivatives, norlapachol, -norlapachone, -norlapachone and hydro-hydroxy-norlapachol (HH-norlapachol), on guinea-pig ileum. In guinea-pig ileum, except for norlapachol, all naphthoquinones inhibited the phasic contractions induced by carbachol or histamine. Even when the ileum was pre-contracted with KCl, carbachol or histamine, all naphthoquinones induced relaxation, suggesting that these naphthoquinones could be acting on the voltage-gated calcium channels (Ca_v). As the tonic component this contraction is maintained mainly by the opening of the Ca_v, we hypothesized that these naphthoquinones might be acting on these channels. This hypothesis was confirmed by the observation that norlapachol (pD'₂ = 4.99), -norlapachone (pD'₂ = 4.49), -norlapachone (pD'₂ = 6.33), and HH-norlapachol (pD'₂ = 4.53) antagonized the contractions induced by CaCl₂ in depolarizing medium nominally without Ca²⁺. As -norlapachone was the most potent we decided to continue the study of its action mechanism. The fact that this naphthoquinone has inhibited the tonic contractions induced by S-(-)-Bay K8644 [EC₅₀ = $(1.6 \ \partial \ 0.30) \cdot 10^{-5} \ \text{M}$] suggests that the Ca²⁺ channel involved belongs to the type L (Ca_v1.2). In addition, in the functional level, the spasmolytic effect of -norlapachone does not involve participation of free radicals, since its curve of relaxation was unchanged in the presence of glutathione, an antioxidant agent.

Key words: Synthetic Lapachol Derivatives, Guinea-Pig Ileum, Cav.